Exercise 7.2.17

Solve the ODE

$$
\left(x y^{2}-y\right) d x+x d y=0
$$

Solution

This ODE is not exact at the moment because

$$
\begin{aligned}
\frac{\partial}{\partial y}\left(x y^{2}-y\right) & \neq \frac{\partial}{\partial x}(x) \\
2 x y-1 & \neq 1 .
\end{aligned}
$$

In order to make it so, multiply both sides of the ODE by an integrating factor I.

$$
\left(x y^{2}-y\right) I d x+x I d y=0
$$

Now that it is exact, we have

$$
\begin{aligned}
\frac{\partial}{\partial y}\left[\left(x y^{2}-y\right) I\right] & =\frac{\partial}{\partial x}(I x) \\
(2 x y-1) I+\left(x y^{2}-y\right) \frac{\partial I}{\partial y} & =x \frac{\partial I}{\partial x}+I
\end{aligned}
$$

To solve for a simple integrating factor, assume that it's only a function of $y: I=I(y)$.

$$
\begin{aligned}
& (2 x y-1) I+\left(x y^{2}-y\right) \frac{d I}{d y}=I \\
& (2 x y-2) I+\left(x y^{2}-y\right) \frac{d I}{d y}=0 \\
& 2(x y-1) I+y(x y-1) \frac{d I}{d y}=0
\end{aligned}
$$

Divide both sides by $x y-1$.

$$
\begin{gathered}
2 I+y \frac{d I}{d y}=0 \\
2+y \frac{\frac{d I}{d y}}{I}=0 \\
\frac{d I}{\frac{d y}{I}}=-\frac{2}{y}
\end{gathered}
$$

The left side can be written as the derivative of a logarithm.

$$
\frac{d}{d y} \ln |I|=-\frac{2}{y}
$$

Integrate both sides with respect to y.

$$
\begin{aligned}
\ln |I| & =-2 \ln |y|+C_{1} \\
& =\ln y^{-2}+C_{1}
\end{aligned}
$$

Exponentiate both sides.

$$
\begin{aligned}
|I| & =e^{\ln y^{-2}+C_{1}} \\
& =e^{\ln y^{-2}} e^{C_{1}} \\
& =y^{-2} e^{C_{1}}
\end{aligned}
$$

Remove the absolute value sign on the left by placing \pm on the right.

$$
I(y)= \pm e^{C_{1}} y^{-2}
$$

Use a new constant C_{2} for $\pm e^{C_{1}}$.

$$
I(y)=C_{2} y^{-2}
$$

Any integrating factor will do, so choose $C_{2}=1$ for the simplest.

$$
I(y)=y^{-2}
$$

Now that the integrating factor is known, the original ODE can be solved.

$$
\left(x y^{2}-y\right) d x+x d y=0
$$

Multiply both sides by y^{-2}.

$$
\begin{equation*}
\left(x-\frac{1}{y}\right) d x+\frac{x}{y^{2}} d y=0 \tag{1}
\end{equation*}
$$

Since it is exact, there exists a potential function $\varphi=\varphi(x, y)$ that satisfies

$$
\begin{align*}
\frac{\partial \varphi}{\partial x} & =x-\frac{1}{y} \tag{2}\\
\frac{\partial \varphi}{\partial y} & =\frac{x}{y^{2}} \tag{3}
\end{align*}
$$

As a result, equation (1) can be written as

$$
\frac{\partial \varphi}{\partial x} d x+\frac{\partial \varphi}{\partial y} d y=0
$$

The left side is how the differential of φ is defined.

$$
d \varphi=0
$$

Integrate both sides.

$$
\varphi(x, y)=C_{3}
$$

The general solution to the ODE is found then by solving equations (2) and (3) for φ. Integrate both sides of equation (2) partially with respect to x to get φ.

$$
\varphi(x, y)=\frac{1}{2} x^{2}-\frac{x}{y}+f(y)
$$

Differentiate both sides with respect to y.

$$
\frac{\partial \varphi}{\partial y}=\frac{x}{y^{2}}+f^{\prime}(y)
$$

Comparing this formula for $\partial \varphi / \partial y$ to equation (3), we see that

$$
f^{\prime}(y)=0 .
$$

Integrate both sides with respect to y.

$$
f(y)=C_{4}
$$

Consequently, the potential function is

$$
\varphi(x, y)=\frac{1}{2} x^{2}-\frac{x}{y}+C_{4}
$$

and the general solution to the ODE is

$$
\frac{1}{2} x^{2}-\frac{x}{y}=C_{5},
$$

where C_{5} is a new constant used for $C_{3}-C_{4}$. Solve this equation for y.

$$
\frac{x}{y}=\frac{x^{2}}{2}-C_{5}
$$

Invert both sides.

$$
\begin{aligned}
\frac{y}{x} & =\frac{1}{\frac{x^{2}}{2}-C_{5}} \\
& =\frac{2}{x^{2}-2 C_{5}}
\end{aligned}
$$

Therefore, multiplying both sides by x and using a new constant A for $-2 C_{5}$,

$$
y(x)=\frac{2 x}{x^{2}+A}
$$

